## MatchQ and PatternTest Equate Cases and Select

Select and Cases are essential*Mathematica*filtering functions. Select filters expressions, usually Lists, with predicates, such as ones that end with Q (evaluate ?*Q to see them) or those that don't, such as Greater, Less, and others that I list here. Cases uses patterns such as testing for a Head (e.g. _Integer) or a more general pattern (e.g. for a 2-element List, {x_,y_}.

Cases and Select are equivalent and a versatile

*Mathematica*programmer knows how to use either one in any circumstance according to the need of the moment. The keys to seeing their equivalence are MatchQ, which translates a*pattern*into a*predicate*, and PatternTest (_?test), which translates a*predicate*into a*pattern*.**MatchQ[4.1,_Real]**

True

**MatchQ[{2,2.1},{_Integer,_Real}]**

True

Thus you can take any usage of Cases and translate it into Select.

**Cases[{a,4,4.2,6,7.5,8},x_Integer/;x>4]**

{6,8}

**integerGreaterThan4Q@n_:=MatchQ[n,_Integer&&n>4];**

**Select[{a,4,4.2,6,7.5,8},integerGreaterThan4Q]**

{6,8}

And you can take any usage of Select and translate it into Cases.

**Select[{1,2,4,7,6,2},EvenQ]**

{2,4,6,2}

**Cases[{1,2,4,7,6,2},_?EvenQ]**

{2,4,6,2}

If we built our own predicate for EvenQ using MatchQ, it works the same way.

**Select[{1,2,3,4},MatchQ[#/2,_Integer]&]**

{2,4}

However note the need for parentheses around the test, which is often the case with PatternTest - the no parens usage fails.

**Cases[{1,2,3,4},_?(MatchQ[#/2,_Integer]&)]**

{2,4}

**Cases[{1,2,3,4},_?MatchQ[#/2,_Integer]&]**

{}

The reason is that Blank and PatternTest both have a higher Precedence ('stickiness') than Function, and so they stick together and PatternTest ends up inside the pure Function instead of using the pure Function as the pattern test. You don't need to worry about that — just as a rule of thumb put parens around any 'homemade' test.

**Precedence/@{PatternTest,Blank,Function}**

{680.,730.,90.}

### The Q Predicates

This is a handy way to use Partition, especially using {} so a final short sublist won't be dropped from a 'ragged' List. The syntax says

Partition[list, sublist length, offset length, start Position, padding]

and here means divide the List into Partitions of length 4, moving the window that same length 4 with each Partition so there is no overlap, start the List at Position 1, and the empty set {} for padding tells Partition to return the final sublist even if it's shorter than what is specified by the 2nd argument, and don't pad that final short list. Evaluate this code in your Notebook:

Partition[list, sublist length, offset length, start Position, padding]

and here means divide the List into Partitions of length 4, moving the window that same length 4 with each Partition so there is no overlap, start the List at Position 1, and the empty set {} for padding tells Partition to return the final sublist even if it's shorter than what is specified by the 2nd argument, and don't pad that final short list. Evaluate this code in your Notebook:

**Qpredicates=Names@"*Q";**

**Print@Length@Qpredicates;**

**Partition[Qpredicates,4,4,1,{}]//TableForm**

Here's the same result in a List.

**Names@"*Q"**

{AcyclicGraphQ,AlgebraicIntegerQ,AlgebraicUnitQ,AntihermitianMatrixQ,AntisymmetricMatrixQ,ArgumentCountQ,ArrayQ,AssociationQ,AtomQ,BinaryImageQ,BipartiteGraphQ,BooleanQ,BoundaryMeshRegionQ,BoundedRegionQ,BusinessDayQ,ColorQ,CompatibleUnitQ,CompleteGraphQ,CompositeQ,ConnectedGraphQ,ConstantRegionQ,ContinuousTimeModelQ,ControllableModelQ,CoprimeQ,DateObjectQ,DaylightQ,DayMatchQ,DeviceOpenQ,DiagonalizableMatrixQ,DigitQ,DirectedGraphQ,DirectoryQ,DiscreteTimeModelQ,DisjointQ,DispatchQ,DistributionParameterQ,DuplicateFreeQ,EdgeCoverQ,EdgeQ,EllipticNomeQ,EmptyGraphQ,EulerianGraphQ,EvenQ,ExactNumberQ,FileExistsQ,firedQ,FreeQ,GeoWithinQ,GraphQ,GroupElementQ,HamiltonianGraphQ,HermitianMatrixQ,HypergeometricPFQ,ImageQ,IndefiniteMatrixQ,IndependentEdgeSetQ,IndependentVertexSetQ,InexactNumberQ,integerGreaterThan4Q,IntegerQ,IntersectingQ,IntervalMemberQ,InverseEllipticNomeQ,IrreduciblePolynomialQ,IsomorphicGraphQ,KEdgeConnectedGraphQ,KeyExistsQ,KeyFreeQ,KeyMemberQ,KnownUnitQ,KVertexConnectedGraphQ,LeapYearQ,LegendreQ,LetterQ,LinkConnectedQ,LinkReadyQ,ListQ,LoopFreeGraphQ,LowerCaseQ,MachineNumberQ,ManagedLibraryExpressionQ,MandelbrotSetMemberQ,MarcumQ,MatchLocalNameQ,MatchQ,MatrixQ,MemberQ,MeshRegionQ,MixedGraphQ,MultigraphQ,NameQ,NegativeDefiniteMatrixQ,NegativeSemidefiniteMatrixQ,NormalMatrixQ,NumberQ,NumericQ,ObservableModelQ,OddQ,OptionQ,OrderedQ,OrthogonalMatrixQ,OutputControllableModelQ,PartitionsQ,PathGraphQ,PermutationCyclesQ,PermutationListQ,PlanarGraphQ,PolynomialQ,PositiveDefiniteMatrixQ,PositiveSemidefiniteMatrixQ,PossibleZeroQ,PrimePowerQ,PrimeQ,ProcessParameterQ,QHypergeometricPFQ,QuadraticIrrationalQ,QuantityQ,RegionQ,RegularlySampledQ,RootOfUnityQ,SameQ,SatisfiableQ,ScheduledTaskActiveQ,SimpleGraphQ,SquareFreeQ,SquareMatrixQ,StringFreeQ,StringMatchQ,StringQ,SubsetQ,SymmetricMatrixQ,SyntaxQ,TautologyQ,TensorQ,TreeGraphQ,TrueQ,UnateQ,UndirectedGraphQ,UnitaryMatrixQ,UnsameQ,UpperCaseQ,URLExistsQ,ValueQ,VectorQ,VertexCoverQ,VertexQ,WeaklyConnectedGraphQ,WeightedGraphQ}

Two excellent introductions to

*Mathematica*: